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Abstract
An ultra-high speed photonic sintering method consisting of flash white light (FWL) combined
with near infrared (NIR) and deep UV light irradiations was developed to fabricate a SrTiO3

(STO) thin film for application in electro-vibration touch panels. The STO thin film was sintered
on PEN by FWL irradiation at room temperature under ambient conditions, which is a
dramatically simple and ultrahigh speed fabrication process compared to the conventional high
temperature (600 °C–900 °C) thermal sintering process. The effects of the FWL irradiation
conditions (energy density, pulse numbers, and pulse duration) on the dielectric constant of the
sintered STO thin films were evaluated. Furthermore, the effects of NIR and deep UV irradiation
during the FWL sintering process were also investigated.

Keywords: vibration touch panel, SrTiO3, flash white light, near infrared, deep ultraviolet

(Some figures may appear in colour only in the online journal)

1. Introduction

Interest in designing and investigating haptic interfaces for
touch-based interactive systems has been growing rapidly [1–
6]. Due to the popularity of touch-based interfaces both in
research and end-user communities, interest in these inter-
faces has accelerated rapidly. Recently, an alternative haptic
interface using the principle of electro-vibration without any
mechanical actuator was developed and applied to various
applications due to its several compelling properties [7–9].
For example, it is fast, low-powered, dynamic, and can be
used in a wide range of interaction scenarios and applications,
including multi-touch interfaces as well as flexible, curved,
and irregular touch surfaces. The tactile feedback based on

electro-vibration is driven by electrostatic friction between the
touch screen surface and the user’s fingers [10, 11]. The
feeling of friction only appears when there is an insulating
barrier between the conductive surface and the sliding finger.
Thus, a thin dielectric layer should be coated on a conductive
electrode in electrovibration-based tactile displays [7]. Con-
ventionally, dielectric materials such as HfO and SiO2 have
been applied to the dielectric layer, because of their excellent
permittivity and stability. However, these materials need a
high voltage for modulating the perceived friction. When a
high electric potential is applied to a thin layer of the di-
electric materials, the current leakage occurs easily causing
the decrease of the efficiency of the device [12–14]. For these
reasons, a high-K material has been required to modulate the
perceived friction even at a low voltage for the
commercialization.
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In these circumstances, thin films made of high dielectric
constant materials based on the alkaline earth titanate of
SrTiO3 (STO) have received much attention due to their large
electro-optical coefficient, low optical losses, and excellent
optical transparency in the visible region [15, 16]. Con-
ventionally, STO thin films are sintered by high temperature
(∼900 °C) thermal sintering [17, 18]. However, high temp-
erature processes can cause fatal problems, causing damage to
flexible polymer substrates such as polyethylene terephthalate
(PET) and polyethylene naphthalate (PEN). Moreover, the
thermal sintering method has limitations for mass production
because of its low throughput and environmental obstacles,
such as the requirement of a chamber.

To overcome these limitations, in this work, a new way
to fabricate STO thin films by using a photonic sintering
method was demonstrated. Flash white light (FWL) irradia-
tion can instantly sinter strontium titanate (SrTiO3) thin films
on ITO-coated PEN at room temperature under ambient
conditions in a few milliseconds without damaging the sub-
strate, which is a dramatically simple, ultra-high speed, and
one-shot large area fabrication process compared to the con-
ventional high temperature thermal sintering process [19, 20].
Meanwhile, we wondered what would happen when light
with a wavelength longer or shorter than FWL (visible light)
is applied, because the behavior of electromagnetic radiation
depends on its wavelength. For this reason, the NIR- or deep
UV-assisted FWL sintering method was suggested and
demonstrated by irradiating the films with NIR and deep UV
during the FWL sintering process of STO thin films (figure 1).
The effects of the FWL irradiation conditions (energy density,
pulse number, and pulse duration) and the power of the NIR/
deep UV on the dielectric constant of STO thin films were
evaluated using several microscopic and spectroscopic char-
acterization techniques, including SEM and XRD.

2. Materials and methods

2.1. Material preparation and fabrication of SrTiO3 thin films

For the fabrication of SrTiO3 (STO) thin films for electro-
vibration touch panels, strontium titanate (ST) solutions with
a concentration of 0.75M were prepared by dissolving
strontium acetate ((CH3CO2)2Sr, 99.995%; Sigma Aldrich) in
heated acetic acid. Titanium IV isopropoxide (99.999%;
Sigma Aldrich) was then added, followed by the addition of
ethylene glycol (99.5%; Samchun) in an acetic acid:ethylene
glycol solution (Rac/e.g. ratio of 1:1). Finally, the solution was
heated to promote the condensation reaction between acetic
acid and ethylene glycol [21]. All of the materials mentioned
above were thoroughly mixed to prepare a stable solution
with a uniform composition [22, 23]. A spin-coating techni-
que was employed to deposit the mixed solution onto ITO
PEN substrates.

2.2. Photonic sintering method

The deposited STO films were sintered by FWL combined
with NIR and deep UV irradiation at room temperature under
ambient conditions (figure 1). White light from a xenon flash
lamp has a broad wavelength range from 380 nm to 950 nm.
In addition, a commercial deep UV system (100 mW,
LUMATEC SUV-DC) with a wavelength range from 180 nm
to 280 nm and an NIR system (500W, Adphos L40) with a
wavelength range of 800–1500 nm were used in this study
(see inset in figure 1(a)). To optimize the photonic sintering
conditions, the irradiation energy of FWL, the power of deep
UV, and the irradiation time of NIR were varied.

2.3. Characterization

The microstructures, surface, and thickness of the sintered
STO films were examined via scanning electron microscopy
(SEM, S4800 Hitachi). To confirm the STO films structure on
the conductive substrate (ITO PEN) after NIR- or deep UV-
assisted FWL irradiation, crystal phase analysis was per-
formed using x-ray diffraction (XRD, D/MAX RINT 2000,
CuKα radiation). The dielectric constant of STO films were
measured at 10 kHz, using a semiconductor parameter ana-
lyzer module (Agilent 4284A and 4155A).

Figure 1. Schematics of the photonic sintering of STO thin films
using flash white light (FWL), NIR, and deep UV (a); and the
measurement of dielectric constant of STO thin film coated on ITO
PEN substrate (b).
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3. Results and discussion

To sinter the STO films, we used FWL with an energy density
ranging from 5–25 J cm−2 where a single pulse with a dura-
tion of 20 ms was applied. As shown in figure 2(a), the di-
electric constant of the STO films began to be measured when
the irradiation energy was higher than 10 J cm−2. An irra-
diation energy less than 5 J cm−2 was insufficient to sinter the
STO thin films. Meanwhile, it was also found that the di-
electric constant increased as the irradiation energy increased
up to 15 J cm−2. In the unsintered STO film, STO nano-
particles were surrounded by a residual binder, which resulted
in a blurry SEM image (figure 3(a)). With an FWL irradiation
of 15 J cm−2, the binder was evaporated, allowing STO
nanoparticles to be observed more clearly (figure 3(b)). Then,
the STO nanoparticles were sintered, resulting in an increase
of the dielectric constant. However, the dielectric constant
decreased again when the FWL was higher than 20 J cm−2

because the STO films were damaged due to excessive irra-
diation energy, as shown in the inset in figure 2(a).

To investigate the effect of the number of pulses, the
number was varied while the total energy was maintained at
15 J cm−2. Figure 2(b) shows that the dielectric constant of
the STO films decreased as the number of pulses increased.
The single pulse produced better dielectric characteristics than

multiple pulses since the intensity of the pulse decreased as
the pulse number increased in order to maintain the same total
energy. For these reasons, the STO films were not sintered
fully when irradiated by multiple pulses.

In addition, with a total irradiation energy of 15 J cm−2,
the duration of the single pulse was varied to investigate the
effect of the pulse duration. As shown in figure 2(c), the
dielectric constant of the STO films decreased with decreasing
pulse duration. When the total energy was maintained, a
shorter pulse duration results in an increase of the pulse
intensity, as shown in inset in figure 2(c). For this reason,
when irradiated by FWL pulses shorter than 15 ms, STO films
were damaged due to the high intensity of the pulses.
Therefore, it was concluded that an irradiation energy of
15 J cm−2 with a single pulse duration of 20 ms were the
optimal conditions for sintering the STO films.

Figure 2(d) shows the XRD patterns of the unsintered
and FWL sintered-STO films. It was observed that the STO
(211) peak increased and the peaks of (110) and (210)
emerged after FWL irradiation. This indicates that the STO
films became a polycrystalline microstructure with (110),
(210), and (211) orientations and were sintered by FWL
irradiation. These results correspond to those obtained from
the SEM analysis (figure 3(b)). Therefore, it was

Figure 2. Flash white light (FWL) sintering of STO films. The dielectric constants of the FWL sintered STO films with variation of the energy
density (a), pulse number (b), and pulse duration (c). XRD patterns of STO films before- and after FWL irradiation (d).
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demonstrated that STO films can be sintered by FWL irra-
diation under ambient conditions.

Deep UV was also used together during the FWL sin-
tering of STO films where the power of deep UV was varied
from 30 to 90 mW cm−2, whereas the FWL was irradiated
with an energy density of 15 J cm−2 with a single pulse and
10 ms duration. As shown in figure 4(a), it was found that
deep UV with an irradiation of 30 mW cm−2 during the FWL
sintering process resulted in a considerable increase of the
dielectric constant of the STO films. It was also observed that
deep UV-assisted FWL sintering led to an increase of the
grain size of STO nanoparticles compared to those sintered by
FWL only, as shown in the SEM images (figures 3(b) and
(c)). This is because the STO films absorbed photonic energy
effectively due to their photo-catalytic phenomena [24]. The
photo-catalytic activity of STO occurs only when photons
with energies greater than the band-gap energy of STO result
in the excitation of electrons, which can promote reaction
[25]. Deep UV with a wavelength of 280 nm has an energy of
4.43 eV, which is greater than the bandgap energy of STO
(3.75 eV), so that can be absorbed in STO films and provide
films with a sufficient energy. For these reasons, the irradia-
tion of deep UV with high energies enhanced the sintering of
STO through the photo-catalytic reaction. As shown in the
XRD pattern (see the blue line in figure 4(c)), it was
demonstrated that the crystallization of STO proceeded in the

(111), (200), and (210) directions, resulting in an increase of
the dielectric property. However, the dielectric constant
decreased again when deep UV was irradiated with a power
higher than 60 mW cm−2 (figure 4(a)). This may be because
the excessive energy of deep UV caused damage of the
STO films.

To further enhance the efficiency of the photonic sin-
tering of STO thin films, NIR irradiation was also applied
with FWL sintering (figure 4(b)). NIR with a power of
3W cm−2 was radiated onto the STO films for 0–180 s, fol-
lowed by FWL irradiation. It is noteworthy that the dielectric
constant of the STO films increased as the irradiation time of
NIR was longer over the entire energy conditions of the FWL.
This is because the longer irradiation time of NIR induced a
higher temperature of the STO films [26]. Temperature is one
of the dominant thermodynamic variables for sintering. Sin-
tering at a higher temperature enhances the densification rate
relative to the grain growth rate [27]. For these reasons,
additional NIR irradiation before FWL sintering could
enhance the perovskite phase of STO films through the photo-
thermal reaction. When the FWL energy was 15 J cm−2 with
NIR treatment for 180 s, the highest dielectric constant was
obtained, which was even higher than the case of deep UV-
assisted FWL sintering (figure 4(d)). However, when the
energy of FWL was higher than 20 J cm−2, the dielectric
constant decreased again, consistent with the case of FWL

Figure 3. The SEM images of STO films before- and after- photonic sintering process using FWL (energy density: 15 J cm−2, pulse duration:
20 ms, pulse number: 1), deep UV (irradiation power: 30 mW cm−2), and NIR (irradiation power: 3 W cm−2, irradiation time: 180 s).

4

Nanotechnology 27 (2016) 505209 H-J Hwang et al



only (figure 4(b)). Moreover, with NIR irradiation longer than
120 s, a FWL of 25 J cm−2 caused damage of the STO films
and PET substrate, as shown in the inset in figure 4(b), so that
the dielectric constants could not be measured. Figure 3
shows that the STO nanoparticles irradiated by FWL com-
bined with NIR were agglomerated more densely than those
sintered by FWL only or deep UV-assisted FWL, resulting in
an increase of the dielectric property. Furthermore, the XRD
pattern of the STO film sintered by FWL combined with NIR
irradiation (see the green line in figure 4(c)) shows that the
peaks of STO were sharper than the other patterns, demon-
strating that a high-quality STO polycrystalline film was
obtained by FWL combined with NIR. These findings cor-
respond to the results of the SEM images (figure 3). There-
fore, it was demonstrated that highly dielectric STO films
were successfully produced on the flexible PEN substrate by
FWL irradiation (15 J cm−2 energy density, single pulse, and
10 ms duration) by NIR treatment for 180 s. The novel pho-
tonic sintering technique for STO thin films described here is
a viable approach to realize room temperature in situ sintering
process for the fabrication of flexible actuator panels.

When STO films were irradiated by a combination of
NIR and deep UV during the FWL sintering process, the
dielectric constant of the STO film decreased considerably
(figure 4(d)). This may be because excessive irradiation
energy from deep UV and NIR caused damage of the
STO films.

4. Conclusion

In this study, an ultra-high speed photonic sintering method
via FWL combined with NIR and deep UV light irradiations
was developed in order to fabricate SrTiO3 (STO) thin films
for vibration touch panel applications. It was demonstrated
that FWL irradiation sintered the STO films on a polymer
substrate at room temperature under ambient conditions in a
few milliseconds. Furthermore, it was also found that addi-
tional irradiation by deep UV and NIR combined with FWL
could enhance the sintering of STO films through photo-
catalytic and photo-thermal reactions, respectively.

Therefore, it is expected that the newly developed pho-
tonic sintering technique of the STO films is a strong alter-
native for in situ sintering of the insulating layer in flexible
actuator panels at room temperature.
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